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Abstract

The occurrence of elemental mercury in flue gases from coal combustion is a problem of current

environmental concern. Oxidized mercury species can be effectively removed from the flue gases by

chemical scrubbers. However, the detailed mechanism by which oxidation occurs remains unclear.

Theoretical rate constants are calculated for mercury oxidation by atomic chlorine. The potential

energy surface is determined using standard quantum chemical methods with relativistic effects

included via the use of an effective core potential (ECP). Experimental thermodynamic and kinetic

data are employed to assess the accuracy of these calculations. Results show that the QCISD method

with the 1992 basis set of Stevens et al. gives good agreement with experiment, suggesting that this

combination may be useful for other mercury–chlorine chemical systems.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The EPA reported that U.S. coal-fired electric utility boilers emitted 51.7 tons of mercury

in 1994–1995 [1]. Once released into the atmosphere, mercury has the potential to

bioaccumulate up to a factor of 10,000 within the aquatic food chain [2,3]. It is the

chemistry of mercury in the gas phase that determines its ultimate fate in the environment.

Mercury released from coal combustion can exist in a variety of oxidation states. From

an environmental viewpoint, oxidized mercury (Hg(I) and Hg(II)) species are preferred in

flue gases because they are water-soluble and can be captured in wet scrubbers before
0378-3820/$ - see front matter D 2003 Elsevier B.V. All rights reserved.
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release in the smoke stack gases [4]. Unfortunately, much of the mercury is not oxidized,

but rather is released into the atmosphere as elemental mercury [5]. It has been determined

that mercury can be oxidized by various chlorine species, but the mechanisms by which

these reactions occur are still in question [6].

In order to optimize the capture of mercury from coal combustion, knowledge of the

detailed chemistry and kinetics of reactions with oxidizing species such as chlorine and

oxygen is essential. However, there is currently a lack of rate constant data available for

reactions involving mercury and chlorine. In this paper, the focus will be on the oxidation

of mercury via chlorine atoms:

HgClþM X
k1

k�1

Hgþ ClþM ð1Þ

This is a reaction for which experimental data is available. Thus, with this relatively

simple system, a comparison of the accuracy of various theoretical methods can be made.

Given the discovery of a sufficiently accurate method, it may be employed to make

theoretical predictions on related mercury–chlorine systems for which experimental data

are currently absent.
2. Computational method

2.1. Basis sets and theoretical methods

Ab initio methods of quantum chemistry have in recent years proven to be effective in

predicting the structure and thermodynamic properties of chemical systems. All such

methods seek to derive a solution of the Schrödinger wave equation (SWE) for the

molecular system, formulated as a stationary configuration of nuclei with an accompanying

set of interacting electrons.

The nuclei can be considered stationary as, being approximately three orders of

magnitude heavier than the electrons, their motion occurs on a much slower timescale

than that of the electrons, and thus the nuclear and electronic motions are effectively

decoupled. Therefore, the SWE can be separated for the two. This is commonly known as

the Born–Oppenheimer approximation, and has the consequence that one need only seek

solutions for the electronic SWE (stated here in the usual atomic system of units):

Xn
i¼1

Di þ
Xn
i>j¼1

1

rij

 !
wel ¼ Eelwel ð2Þ

Eq. (2) may only be solved analytically for the single-electron problem, and so for larger

systems of interest an approximate method must be employed. First it should be observed

that Eq. (2) has an infinite dimensional solution space, and thus for computational purposes

this must be approximated by a finite dimensional subspace, spanned by a chosen set of

basis functions which hopefully offer a reasonable representation of the electronic motion.

In the usual ab initio molecular orbital (MO) approach, one considers the molecular orbitals

to be linear combinations of the atomic orbitals:

wi ¼
X

cli/l: ð3Þ
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wi is the ith molecular orbital, cli are the coefficients of the linear combination, /l is the lth
atomic orbital, and n is the number of atomic orbitals [7]. The atomic orbitals are

themselves expressible as linear combinations of the atomic basis functions. In general,

the larger the basis set the closer to the ‘‘exact’’ solution one gets. However, larger basis sets

require more computational resources, and so there are practical limits to the accuracy one

can obtain.

Calculation methods can be divided into two categories: ab initio methods, which base

themselves on the aforementioned MO ansatz, and density functional methods. The

simplest ab initio method in common usage yielding at least semi-qualitative results is

the Hartree–Fock self-consistent field (HF-SCF) approach [8]. In this method, Eq. (2) is

reduced to a one-electron problem for each electron, coupled so that each electron interacts

with the averaged field of its peers. These are the so-called Fock equations, and are solved

iteratively until self-consistency is obtained. HF-SCF has the advantage of being a

variational method—the energy obtained is an upper bound of the exact energy, and being

reasonably cheap in terms of computational requirements. However, the ‘‘averaged field’’

assumption in the scheme means that short-range correlations between electrons are

ignored, and this can be particularly important when heavy elements are part of the system

under study.

Thus for the present system of interest, a post-SCF correlated method is greatly

desirable. Møller–Plesset (MP) perturbation theory is the next step in sophistication,

taking the HF wavefunction and energy as the zeroth order components and applying the

standard ansatz of Rayleigh–Schrodinger (RS) perturbation theory [9]. Most commonly

one takes the perturbation expansion to second order (MP2) or fourth order (MP4)

depending on the computational resources available [10,11]. MP methods generally do a

good job of including the correlation energy (the difference between the ‘‘exact’’ HF energy

and the energy from the exact solution); however, it has been shown that the MP series

expansion yields poor results for many heavy element systems [12].

Thus for systems such as the mercury reaction of present interest, an ‘‘infinite order’’

method such as the coupled cluster (CC) or quadratic configuration interaction (QCI) is

preferred [13–16]. These methods use summation techniques to add certain terms in the

MP expansion to infinite order, thus alleviating the problem of convergence. These

approaches are also size-consistent—meaning that the method scales correctly with the

number of particles in the system. This can be a problem when MP or truncated

configuration–interaction methods are applied to systems with a large number of electrons

(such as in the present case).

A final matter of concern with these calculations is consideration of special relativistic

effects, which can have a marked effect on systems including heavy elements. These are

most evident in the inner core electrons of heavy atoms where electron velocities can be a

considerable fraction of the speed of light. We shall take account of such effects by

employing an effective core potential (ECP) (often called a pseudopotential) which is an

effective potential describing the inner core and at the same time semi-empirically

accounting for relativistic effects [17,18].

The following relativistic effective core potentials are the most recent developed in the

literature for mercury and are the ones compared in this research: Stuttgart 1997 [19],

Stevens et al. [20], and Hay and Wadt [21]. The basis set used for chlorine is a standard
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Gaussian basis set including both diffuse and polarization functions; 6-311+ +G(3df, 3pd).

All pseudopotentials were used in Gaussian 98 to calculate the energies and structures of the

transition state, products and reactants using two different calculational methods: MP4 with

single, double and quadruple excitations only (MP4SDQ) and QCI with single and double

excitations (QCISD) [22].

In the study of the current reaction, MP4SDQ was used as one of the original method

choices because MP4 energies are generally more accurate. As previously noted, MP

convergence may be a concern for this system, so QCISD is another reasonable method of

choice in the current work.

Density functional theory using the B3LYP method with the LANL2DZ basis set was

also evaluated because it has been used to determine the activation energy and rate

constants of bimolecular mercury oxidation reactions involving chlorine [6].

2.2. RRKM theory

Transition state theory is traditionally used to calculate rate constants for bimolecular

reactions. However, the reaction of current focus is unimolecular, making Rice–Ramps-

berger–Kassel–Marcus (RRKM) theory a necessary tool. The overall unimolecular

reaction is written in terms of two energies: E+ and E*. E* is the energy of the reactant

once it acquires the energy needed to react. The energy E+ is the activation energy, E0,

subtracted from the energy of the energized reactant (i.e. E+ =E*�E0) [23]. The density of

states, q(E*), and the sum of states, W(E+), were calculated using the Beyer–Swinehart

algorithm [24]. The universal rate constant for a unimolecular reaction can then be

calculated from:
kuni ¼
LQþ

1 expð�E0=kTÞ
hQ1Q2

Z l

Eþ¼0

W ðEþÞexpð�Eþ=kTÞdEþ

1þ kaðE*Þ=bcZLJ½M�
kaðE*Þ ¼
LQþ

1

hQ1qðE*Þ
W ðEþÞ

ð4Þ
E* total vibrational and rotational energy

E+ total energy of a given transition state

E0 activation energy

Q1
+ partition function for the rotation of A +

Q1 partition function for the rotation of A

ZLJ Lennard–Jones collision frequency

Q2 partition function for nonrotational modes

L statistical factor

k Boltzmann’s constant

bc collisional efficiency

W(E+) sum of states

q(E*) density of states

h Plank’s constant

[M] concentration of bath gas
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All of the parameters listed above can be obtained from theory with the exception of the

collisional deactivation efficiency, bc. This collisional efficiency is an empirical value that

can be obtained through experimental knowledge of the reaction [25]. Many models have

been determined for calculating the collision efficiency, but again experimental data is

necessary [26,27]. Due to the lack of experimental data for the reaction studied in this

paper, bc is used as a fitting parameter that ranges between zero and one. It is important to

note that the value of bc does not change the rate constant by more than a factor of 6 (cf.

Fig. 1).

2.3. Canonical variational transition state theory

Due to the shallow potential energy surface for reaction (1), the rate constants for each

combination of method and basis set were calculated using canonical variational transition

state theory (CVTST) given by:

kCVT=GðTÞ ¼ jGðTÞkCVTðTÞ ð5Þ

where T is the temperature, jG(T) is a ground-state (G) transmission coefficient which

primarily accounts for tunneling, and kCVT(T) is the hybrid canonical variational transition

state theory (CVT) rate constant for which the intrinsic reaction coordinate is treated

classically and the bound vibrations are quantized [28]. The hybrid CVT rate can be

obtained by variationally minimizing the universal RRKM-theory rate constant, kuni(T )

with respect to the position x of the generalized transition state along the reaction

coordinate,

kCVTðTÞ ¼ min
x

kuniðT ; xÞ ð6Þ

where kuni(T,x) is expressed in Eq. (4).
3. Results and discussion

In the remainder of this work, zero point energies and thermal corrections were

included in all calculated results and the frequency calculations were left unscaled due

to the unavailability of proper scaling factors. The basis set for chlorine was chosen due to

the agreement of the calculated theoretical rate constant with the experimental rate

constant for the following reaction:

Cl2 þM X 2ClþM ð7Þ

as shown by Fig. 2 [29]. Comparing the theoretical results to experiment, the decompo-

sition reaction of chlorine has a collisional efficiency in the range of 0.1–0.2. Agreement

between the theoretical and experimental rate constants showed that the 6-311+ +G(3df,

3pd) basis set was adequate for chlorine.



Fig. 1. Canonical variational transition state theory rate constant (kCVT) at 393 K for each combination, compared

to experimental rate constant, varying the collision efficiency, bc. HgCl +M!Hg+Cl +M.
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The experimental rate constant reported for the reverse of reaction (1) is

1.95� 1010 M� 1 s� 1 [30]. RRKM theory allows for the calculation of unimolecular

decompositions in the forward direction only. Thus, the equilibrium constant was

found to be Keq = 2.21�10� 10 with the Shomate equation and data from the NIST

webbook [33] before the following relationship was used to calculate the equilibrium

rate constant,

Keq ¼
k1

k�1

ð8Þ

The experimental rate constant for the forward reaction is 4.309 M� 1 s� 1. Each of

the mercury basis sets (1985, 1992, 1997) were combined with two chosen methods

(MP4SDQ and QCISD) forming six different combinations. Density functional theory

using B3LYP with the LANL2DZ basis set was also studied giving a total of seven

theoretical combinations evaluated in this work. Experimental thermodynamic and

kinetic data are compared to theory for each combination of method and basis set in

Table 1.

The 1985 basis set was eliminated from consideration after comparing the calculated

geometries with experiment with a minimum error of 25%. A reason for the inaccuracy of

the 1985 basis set is due to the small number of basis functions outside the effective core. In

general, the smaller the number of electrons represented as functions on their own, the less

accurate the results will be. Unfortunately in the case of the 1985 basis set, a majority of the

electrons are held ‘fixed’ in an effective core.

Similarly, density functional theory using the B3LYP/LANL2DZ combination yielded

an inaccurate geometry value with an error of 11.6%. However, it is important to note that



Fig. 2. Theoretical universal rate constant using 6-311 + +G(3df, 3pd), compared to experimental rate constant,

varying 1000/T. Cl2 +M! 2Cl +M.
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the theoretical rate constant is within two orders of magnitude of the experimental value.

Due to the large error of the estimated geometry by density functional theory, the accuracy

of the rate constant calculation should be questioned and this method and basis set will not

be considered further in this work. At this point, there are four combinations left for

comparison.

Experimental frequency values for mercuric chloride could not be found, but the four

theoretical combinations remaining give frequencies that range between 290 and 300 wave

numbers. Comparing each combination of method and basis set to the experimental

geometries, the errors are relatively equal, with 1997/MP4SDTQ having the lowest error

of 2.7% and 1992/QCISD having the greatest error of 3.0%. A comparison of the heats of

reaction shows that the 1992 basis set has a maximum error of 3.9% compared to the 1997

basis set which has a minimum error of 32.3%. This implies the energies using the 1997

basis set will not be accurate, leading to incorrect activation energies.

Comparing the theoretical rate constants to experiment, the most accurate combina-

tions are 1992/QCISD and 1992/MP4SDQ. With bc = 0.2 for the decomposition reaction

of mercuric chloride, both rate constant estimates are within an order of magnitude of the



Table 1

Comparison of thermodynamic and kinetic data of the reaction, HgCl +M!Hg+Cl +M

Experimental LANL2DZ

B3LYP

1985

MP4SQ

1985

QCISD

1992

MP4SQ

1992

QCISD

1997

MP4SDQ

1997

QCISD

Geometry (Å) 2.28a 2.34b 2.612 1.689 1.689 2.406 2.412 2.404 2.407

DHrxn (kJ/mol) 104.23c 104.38 – – 108.08 108.32 137.99 138.16

Frequency (1/cm) – 228 1583 1582 292 290 300 292

Activation energy

(kJ/mol) at 393 K

– 82.15 – – 71.60 67.52 87.01 84.34

Rate constant

(M� 1 s� 1)

at 393 K

k1 = 4.309,

k� 1 = 1.95� 1010d
k1 = 2.29� 10� 1 – – k1 = 4.25 k1 = 14.6 2.98� 10� 2 6.11�10� 2

a Ref. [31].
b Ref. [32].
c Ref. [33].
d Ref. [30].
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Fig. 3. Canonical variational transition state theory rate constant (kCVT) for each combination, compared to

experimental rate constant, varying temperature, 1/T. Note: bc = 0.2, HgCl +M!Hg+Cl +M.

J. Wilcox et al. / Fuel Processing Technology 85 (2004) 391–400 399
experimental rate constant value. These results lead to the conclusion that the 1992 basis

set is the most accurate when compared to all available experimental data (Fig. 3).

This research strongly suggests that the 1992 basis set is a good basis set for

representing mercury when calculating reaction phenomena. However, due to the lack

of experimental data for reaction (1), it may be important to consider both the 1992 and

1997 basis sets for future oxidation reactions involving mercury and chlorine. Due to the

convergence problems associated with large basis sets and Møller–Plesset perturbation

theory, QCISD should be the method of choice for any mercury oxidation reactions

involving chlorine.

From the calculations in this work, (Fig. 3) it was found that a good estimation of the

rate constant for reaction (1) is:

kCVT=G ½M�1 s�1� ¼ 4:25� 1010e�8588=T ð9Þ

in the temperature range of 393–1500 K.
4. Conclusions

Theoretical rate constants were compared for a reaction involving mercury oxidation by

chlorine atoms. Rate constants were calculated for seven different combinations of

calculational methods and basis sets that include relativistic effective core potentials.

Overall, the 1992/QCISD combination proved to be the most accurate when compared to

experimental thermodynamic and kinetic data.
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